skip to main content


Search for: All records

Creators/Authors contains: "Zivick, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present analysis of the proper-motion (PM) field of the red clump stars in the Large Magellanic Cloud (LMC) disk using the Gaia Early Data Release 3 catalog. Using a kinematic model based on old stars with 3D velocity measurements, we construct the residual PM field by subtracting the center-of-mass motion and internal rotation motion components. The residual PM field reveals asymmetric patterns, including larger residual PMs in the southern disk. Comparisons of the observed residual PM field with those of five numerical simulations of an LMC analog that is subject to the tidal fields of the Milky Way and the Small Magellanic Cloud (SMC) show that the present-day LMC is not in dynamical equilibrium. We find that both the observed level of disk heating (PM residual rms of 0.057 ± 0.002 mas yr −1 ) and kinematic asymmetry are not reproduced by Milky Way tides or if the SMC impact parameter is larger than the size of the LMC disk. This measured level of disk heating provides a novel and important method to validate numerical simulations of the LMC–SMC interaction history. Our results alone put constraints on an impact parameter ≲10 kpc and impact timing <250 Myr. When adopting the impact timing constraint of ∼140–160 Myr ago from previous studies, our results suggest that the most recent SMC encounter must have occurred with an impact parameter of ∼5 kpc. We also find consistent radial trends in the kinematically and geometrically derived disk inclination and line-of-node position angles, indicating a common origin. 
    more » « less
  2. ABSTRACT

    We use Gaia EDR3 data to identify stars associated with six classical dwarf spheroidals (dSphs) (Draco, Ursa Minor, Sextans, Sculptor, Fornax, Carina) at their outermost radii, beyond their nominal King stellar limiting radius. For all of the dSphs examined, we find radial velocity matches with stars residing beyond the King limiting radius and with ${\gt}50{{\ \rm per\ cent}}$ astrometric probability (four in Draco, two in Ursa Minor, eight in Sextans, two in Sculptor, 12 in Fornax, and five in Carina), indicating that these stars are associated with their respective dSphs at high probability. We compare the positions of our candidate ‘extra-tidal’ stars with the orbital tracks of the galaxies, and identify stars, both with and without radial velocity matches, that are consistent with lying along the orbital track of the satellites. However, given the small number of candidate stars, we cannot make any conclusive statements about the significance of these spatially correlated stars. Cross matching with publicly available catalogues of RR Lyrae, we find one RR Lyrae candidate with ${\gt}50{{\ \rm per\ cent}}$ astrometric probability outside the limiting radius in each of Sculptor and Fornax, two such candidates in Draco, nine in Ursa Minor, seven in Sextans, and zero in Carina. Follow-up spectra on all of our candidates, including possible metallicity information, will help confirm association with their respective dSphs, and could represent evidence for extended stellar haloes or tidal debris around these classical dSphs.

     
    more » « less
  3. Abstract

    We present deep Hubble Space Telescope (HST) photometry of the ultra-faint dwarf (UFD) galaxies Pegasus III (Peg III) and Pisces II (Psc II), two of the most distant satellites in the halo of the Milky Way (MW). We measure the structure of both galaxies, derive mass-to-light ratios with newly determined absolute magnitudes, and compare our findings to expectations from UFD-mass simulations. For Peg III, we find an elliptical half-light radius ofah=1.′880.33+0.42(11830+31pc) andMV=4.170.22+0.19;for Psc II, we measureah=1.′310.09+0.10(69 ± 8 pc) andMV=4.280.16+0.19. We do not find any morphological features that indicate a significant interaction between the two has occurred, despite their close separation of only ∼40 kpc. Using proper motions (PMs) from Gaia early Data Release 3, we investigate the possibility of any past association by integrating orbits for the two UFDs in an MW-only and a combined MW and Large Magellanic Cloud (LMC) potential. We find that including the gravitational influence of the LMC is crucial, even for these outer-halo satellites, and that a possible orbital history exists where Peg III and Psc II experienced a close (∼10–20 kpc) passage about each other just over ∼1 Gyr ago, followed by a collective passage around the LMC (∼30–60 kpc) just under ∼1 Gyr ago. Considering the large uncertainties on the PMs and the restrictive priors imposed to derive them, improved PM measurements for Peg III and Psc II will be necessary to clarify their relationship. This would add to the rare findings of confirmed pairs of satellites within the Local Group.

     
    more » « less